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products that perform poorly in capturing dryland carbon flux dynamics. (Fawcett 1 1 Trends, slope and
et al., 2022; MacBean et al., 2021; Teckentrup et al., 2021). Thus, in this study, we —
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Fig 3: Time-series of mean annual GPP
(a) CABLE POP (b) CLASSIC (C) CLM5 (d) DLEM (e) IBIS (f) ISAM
—+ L1 o 0 o EE s
. e
. ﬁ%% ; PO 3.0

45°N .I'.r. E_ . . " K
35°N b

._ 2.5
o \C R
| 2.0
(g) ISBA CTRIP (h) JSBACH (1) JULES (j) P] GUESS (k) (I) LPX Bern
. ‘ = n . _jl-.'Ei
45°N _ :"'_i__._
k: ™
k% [ Q
35°N ___:5'_: -' 1.0 8_
25°N \‘* C
| \\A 0.5
(p) VISIT NIES
ﬁ% T >0
45°N &Rr A
: DS —0.5
35°N R |
\)%C
T ~1.0
~i

B “':.!/'\
120°W 100°W 120°W 100°W 120°W 100°W 120°W 100°W 120°W 100°W 120°W 100°W
Figure 4: Evaluation of annual GPP of 18 TRENDY models in comparison with DruFlux annual GPP
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. 5 SUMMARY

" |n arid regions most models are underestimating the DryFlux GPP.
However, in semi arid regions models are both underestimating and
overestimating the Druflux GPP.

= Vegetation fractional cover maps used in the models could be at fault

= However, further research is needed to answer why some models are
performing better or worse in capturing spatial patterns of interannual
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Fig 5: Fractional vegetation cover
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