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INTRODUCTION DATA AND GLOBAL DRYLAND
Drylands are hotspots of land-atmospheric coupling and are thought to play a = Reference data: Monthly mean DryFlux GPP from 2001 -2016
dominant role in global carbon cycle variability. Given dryland ecosystem functioning = Yearly mean TRENDY v10 GPP from 1970 — 2020 from 18 models
is extremely sensitive to future changes in water availability, it is essential that the (Friedlingstein et al., 2021)
dynamic global vegetation models (DGVMs) that form the land component of earth = Global aridity index (Al) data were used for dryland masking
system models used for climate change projections can accurately simulate dryland
carbon and water fluxes. However, several recent studies have documented that
DGVMs perform poorly in capturing dryland carbon dynamics (Fawcett et al., 2022;
MacBean et al., 2021; Teckentrup et al., 2021). Thus, a global scale assessment of | e
model dryland productivity using a data product specifically developed for dryland AT Ry, gu - i‘k
. . .- . i s~ "0 N
ecosystems is needed. In this study, we evaluated the ability of the TRENDY v10 suite e ’ &
. . . . -, . Y -
of DGVMs in capturing global spatiotemporal patterns in dryland gross CO, uptake (or v w :
gross primary productivity, GPP) using the newly developed ‘DryFlux” GPP product "‘\{9 ¢ L.?:;}\‘ ’-i)
(Barnes et al., 2021). DryFlux is an upscaled eddy covariance flux product developed ]& '
using machine learning methods that was designed to capture ecohydrologic controls -
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Figure 1: DGVMs perform poorly in capturing dryland carbon dynamics (MacBean et al. (2021))
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Figure 3: Evaluation of mean annual GPP of 18 TRENDY models in comparison with Dryland mean annual GPP

" High CV means inter-annual variability in GPP is high for that model (and vice versa)

= For DryFlux CV, yearly GPP variability is lower in northern hemisphere compared to
southern hemisphere and only ORCHIDEEv3 S3 captured this spatial pattern

= Within sub-Saharan regions, semi-arid region GPP variability is lower than arid
regions variability and this patterns are well captured by several models.

= DryFlux GPP variability is highest Australia and very few models captured this spatial

pattern

= |BIS S3 and YIBs S3 perform worst in terms of underestimating the GPP variability in
global drylands

SUMMARY

= We identified spatial patterns of inter-annual GPP variability in global
dryland regions using the DryFlux product and assessed if the TRENDY
models were able to capture these pattens

= However, further research is needed to answer why some models are
performing better or worse in capturing spatial patterns of interannual
variability in GPP.
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