
Global-Scale Benchmarking of TRENDY Dynamic Vegetation Model Spatiotemporal Estimates of 
Dryland Productivity using a Dryland-Specific, Ecohydrologically-Informed GPP Product 

Drylands are hotspots of land-atmospheric coupling and are thought to play a
dominant role in global carbon cycle variability. Given dryland ecosystem functioning
is extremely sensitive to future changes in water availability, it is essential that the
dynamic global vegetation models (DGVMs) that form the land component of earth
system models used for climate change projections can accurately simulate dryland
carbon and water fluxes. However, several recent studies have documented that
DGVMs perform poorly in capturing dryland carbon dynamics (Fawcett et al., 2022;
MacBean et al., 2021; Teckentrup et al., 2021). Thus, a global scale assessment of
model dryland productivity using a data product specifically developed for dryland
ecosystems is needed. In this study, we evaluated the ability of the TRENDY v10 suite
of DGVMs in capturing global spatiotemporal patterns in dryland gross CO2 uptake (or
gross primary productivity, GPP) using the newly developed ‘DryFlux’ GPP product
(Barnes et al., 2021). DryFlux is an upscaled eddy covariance flux product developed
using machine learning methods that was designed to capture ecohydrologic controls
on dryland carbon dynamics.
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3 METHOD

▪ Both 0.5° resolution DryFlux and TRENDY GPP datasets were converted to same
unit (KgC𝑚−2𝑦−1) to calculate the mean annual GPP over a 16-year time period
(2001-2016)

▪ The coefficient of variance (CV) was calculated by dividing standard deviation in
annual GPP by the mean

▪ Global AI data were downscaled to 0.5° to match DryFlux and TRENDY data
▪ Only arid (AI range 0.05-0.20) and semi-arid (AI range 0.20-0.50) areas are masked

out for dryland model GPP evaluation

▪ Reference data: Monthly mean DryFlux GPP from 2001 -2016

▪ Yearly mean TRENDY v10 GPP from 1970 – 2020 from 18 models 
(Friedlingstein et al., 2021)

▪ Global aridity index (AI) data were used for dryland masking
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4 RESULTS

Figure 3: Evaluation of mean annual GPP of 18 TRENDY models in comparison with Dryland mean annual GPP 
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Figure 2: Dryland based on Aridity Index (precipitation/potential evapotranspiration). Source: 
https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08

SW US sites

Figure 1: DGVMs perform poorly in capturing dryland carbon dynamics (MacBean et al. (2021)) 

5 SUMMARY
▪ High CV means inter-annual variability in GPP is high for that model (and vice versa)
▪ For DryFlux CV, yearly GPP variability is lower in northern hemisphere compared to

southern hemisphere and only ORCHIDEEv3 S3 captured this spatial pattern
▪ Within sub-Saharan regions, semi-arid region GPP variability is lower than arid

regions variability and this patterns are well captured by several models.
▪ DryFlux GPP variability is highest Australia and very few models captured this spatial

pattern
▪ IBIS S3 and YIBs S3 perform worst in terms of underestimating the GPP variability in

global drylands

▪ We identified spatial patterns of inter-annual GPP variability in global
dryland regions using the DryFlux product and assessed if the TRENDY
models were able to capture these pattens

▪ However, further research is needed to answer why some models are
performing better or worse in capturing spatial patterns of interannual
variability in GPP.
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