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INTRODUCTION SANTA RITA EXPERIMENTAL RANGE

Drylands are particularly vulnerable to climate change and land degradation, which is
a major issue given these represent Earth’s largest biome and support the livelihoods
of billions of people. Given their important role in terrestrial carbon and water cycles
and their vulnerability to global change, it is imperative that we are able to monitor
large-scale changes in dryland vegetation and soil cover types. However, most dryland
classification algorithms have focused solely on detecting shrub cover (e.g., Brandt et
al., 2020). Separating out the fractional cover (fCover) of other cover types in these
sparse, heterogeneous ecosystems, including the biological soil crusts (biocrusts) that
are characteristic of dryland ecosystems worldwide (Belnap et al., 2016) has been at
the limit of what is possible given the spatial and spectral resolution of existing
remote sensing (RS) data. However, with increasing availability of new and higher

= Santa Rita Experimental Range (SRER) in southern Arizona (Fig. 1).
= Sparsely vegetated semi-arid mixed woody plant and C4 grass ecosystem.

= Biocrusts present areas not covered by vegetation.

spectral and spatial resolution RS datasets, we are now entering an era in which the Arizona

full spectrum of dryland cover types can be detected. Here we tested the use of ‘: .

unsupervised spectral unmixing methods and high resolution hyperspectral and {_ *Phoenix

LIDAR-derived canopy height data to separately detect the fractional cover of key |

plant and soil functional types at the semiarid Santa Rita Experimental Range savanna : Tucsone

ecosystem in southern Arizona. 100 | RER
e Jkm

Figure 1: Location, outline with fractional shrub cover, and photo of the Santa Rita Experimental Range.

CLASSIFICATION METHODS

" |mages pre-processing included: image mosaicking, data cleaning and bi-directional
reflection distribution function (BRDF) correction to remove “seamlines” between

= Classification methods shown in Table 2. Aim to derive fractional cover of 3 main types:
tall woody plants, low stature grasses, and bare soil.

" Fusion of both hyperspectral and CHM data tested.

lm Classification | Class Data (2018)

Im types

0.Im Unsupervised Mixed Spectral Unmixing Hyperspectral image onl

P P g rypersp g Y
pixel Fusion Unmixing  Hyperspectral+Lidar height
Table 2: Classification methods and data used.
= Different number of spectral endmembers tested in signature creation.
SPECTRAL UNMIXING RESULTS FROM SRER .

Mean absolute difference and fuzzy error matrix used for accuracy assessment.
= Reference image from supervised classification of camera images based on 1000
manually classified ground control points.

" Tall woody plants only separated from low stature grasses with 5 endmembers
plus LIDAR-derived height data (Fig. 2f) (Pervin et al., under review).

" |n addition to bare soil, vegetation, and shadow+noise classes, there is dominant

presence of a unique spectral signature (“Other” red curve in Figs. 2c-f). SUMMARY AND PERSPECTIVES FOR

= “Other” spectral appears to be similar FUTURE WORK
to hyperspectral signatures of “wet” qudy -Grass . Woody & Grass
. . . —Shadow & Noise =——Bare Soil 1 Bare Soil 2 =——Other
lichen biocrust communities collected , , , ,
at another location in Utah (Smith et 4 EM Spectral Sig 4 EM Spectral Sig with Height = Unsupervised spectral unmixing appears to have detected
al., 2019; Fig. 2g) 0,06 c) Al d) an additional unique spectra of a dominant cover type
O M that is not representative of bare soil or vegetation
§0-4 spectra.
%0.2 = Comparison with existing biocrust spectra points towards
ad this as an explanation for what this “Other” class may be.
0.0 S emanncs . . . . .
5 EM Spectral S'ig "5 EM Spectral Sig with Height = NEON field experimentalists working at SRER confirm
) f presence of biocrusts. This work shows they may be
0 06 o 4 widespread at SRER (Fig. 3).
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locations and spectra at SRER to confirm the result.

Figure 2: Example from one location in SRER of endmember spectra derived from unsupervised spectral unmixing signature creation: a) and b) imagery of the location; c) 4 endmembers
(EM) with hyperspectral data only; d) 4 EM hyperspectral + height data; e) 5 EM hyperspectral only; and f) 5 EM hyperspectral + height data; g) from Fig. 10 Smith et al. (2019).
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