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SATELLITE CARBON CYCLE MODEL-DATA ASSIMILATION

How can we best constrain terrestrial biosphere model carbon cycle predictions using satellite
remote sensing data?

INTRODUCTION USING NDVI TO CONSTRAIN SEASONAL LEAF PHENOLOGY

Mean annual GPP (1990-2010)
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Predicting the fate of the terrestrial carbon, C, sink under future global change strongly relies
on our ability to accurately model global scale vegetation dynamics and surface CO, fluxes.
However, terrestrial biosphere model (TBM) leaf phenology and C cycle processes remain
subject to large uncertainties, partly because of unknown or poorly calibrated parameters. 175 A
Satellite remote sensing (RS) data offer us the possibility to optimize these model parameters

» Optimization of phenology parameters shortened the growing season due to a earlier start to
senescence (higher temp/moisture senescence thresholds) (MacBean et al., 2015)

» All temperate and boreal deciduous PFTs = however, no constraint for semi-arid PFT phenology
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ASSIMILATION METHOD

= ORCHIDEE terrestrial biosphere model the land component of the French IPSL earth
system model (version used in IPCC AR5/CMIP5 used here).
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SATELLITE SIF FOR CONSTRAINING GLOBAL GPP

= 13 plant functional types (PFTs); big leaf phenology; Farquhar/Collatz C3/C4 photosynth.

= Bayesian data assimilation (DA) algorithm = update prior knowledge of parameter values

and distributions based on new information in observations. 20 A » Decrease in global GPP

= Gradient decent methods (L-BFGS-F and finite difference) to minimize a cost function J(x) magnitude for all PFTs

that represents the misfit between model and data (red in eq 1), and misfit between new
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< — Sl e st senescence et al., 2014; not shown here) actually had least impact on global GPP budgets (Fig. 5) o o o , ,
N Y " Do we gain information in the assimilation when using both NDVI and SIF to constrain
» NDVI reduced growing season length = small impact on GPP in both NH and Tropics photosynthesis, phenology and parameters of SIF-GPP model? (KM with NM).
= STUDY 2: GOME-2 Solar Induced Chlorophyll Fluorescence (SIF) data to constrain model . _ o
gross CO2 fluxes (gross primary productivity — GPP) » SIF has greatest constraint on global GPP budgets due to strong decreases in positive * Do we need to include leaf biomass parameters when optimizing phenology and GPP? (NM and CB).
- Linear relationship between GPP and SIF (MacBean et al., 2018) model bias in both NH and Tropics = redistribution of global GPP & better compares = Can issues with joint assimilation of satellite FAPAR and FLUXNET data (model degradation to other
- Mechanistic model between GPP and SIF based on SCOPEv1.61 (Bacour et al., 2019) to independent data-derived estimate from upscaled Fluxnet data (Jung et al., 2011). variable) be improved if we remove the big leaf model and instead have of multi-layer canopy? (NR,

- Parameters related to photosynthesis, phenology and GPP-SIF model. JGD, NM and PP as part EU H2020 MULTIPLY Project: http://www.multiply-h2020.eu).
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